Displaying similar documents to “Orthogonality and complementation in the lattice of subspaces of a finite vector space”

Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice

Lifeng Li, Jianke Zhang, Chang Zhou (2019)

Kybernetika

Similarity:

For a t-norm T on a bounded lattice ( L , ) , a partial order T was recently defined and studied. In [11], it was pointed out that the binary relation T is a partial order on L , but ( L , T ) may not be a lattice in general. In this paper, several sufficient conditions under which ( L , T ) is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on L such that ( L , T ) is a lattice are presented.

Goldie extending elements in modular lattices

Shriram K. Nimbhorkar, Rupal C. Shroff (2017)

Mathematica Bohemica

Similarity:

The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations...

Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices

Gábor Czédli (2024)

Mathematica Bohemica

Similarity:

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no M 3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset P is said to be JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset J ( Con L ) of join-irreducible congruences of L . We prove that...

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

Similarity:

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Direct summands of Goldie extending elements in modular lattices

Rupal Shroff (2022)

Mathematica Bohemica

Similarity:

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.

Hyperreflexivity of bilattices

Kamila Kliś-Garlicka (2016)

Czechoslovak Mathematical Journal

Similarity:

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice we can construct the bilattice Σ . Similarly, having a bilattice Σ we may consider the lattice Σ . In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples...

Explicit construction of normal lattice configurations

Mordechay B. Levin, Meir Smorodinsky (2005)

Colloquium Mathematicae

Similarity:

We extend Champernowne’s construction of normal numbers to base b to the d case and obtain an explicit construction of a generic point of the d shift transformation of the set 0 , 1 , . . . , b - 1 d .

Relations on a lattice of varieties of completely regular semigroups

Mario Petrich (2020)

Mathematica Bohemica

Similarity:

Completely regular semigroups 𝒞ℛ are considered here with the unary operation of inversion within the maximal subgroups of the semigroup. This makes 𝒞ℛ a variety; its lattice of subvarieties is denoted by ( 𝒞ℛ ) . We study here the relations 𝐊 , T , L and 𝐂 relative to a sublattice Ψ of ( 𝒞ℛ ) constructed in a previous publication. For 𝐑 being any of these relations, we determine the 𝐑 -classes of all varieties in the lattice Ψ as well as the restrictions of 𝐑 to Ψ .

Modular lattices from finite projective planes

Tathagata Basak (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Using the geometry of the projective plane over the finite field 𝔽 q , we construct a Hermitian Lorentzian lattice L q of dimension ( q 2 + q + 2 ) defined over a certain number ring 𝒪 that depends on q . We show that infinitely many of these lattices are p -modular, that is, p L q ' = L q , where p is some prime in 𝒪 such that | p | 2 = q . The Lorentzian lattices L q sometimes lead to construction of interesting positive definite lattices. In particular, if q 3 mod 4 is a rational prime such that ( q 2 + q + 1 ) is norm of some element in...

Some methods to obtain t-norms and t-conorms on bounded lattices

Gül Deniz Çaylı (2019)

Kybernetika

Similarity:

In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice L based on a priori given t-norm acting on [ a , 1 ] and t-conorm acting on [ 0 , a ] for an arbitrary element a L { 0 , 1 } . We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice. ...

Quasicontinuous spaces

Jing Lu, Bin Zhao, Kaiyun Wang, Dong Sheng Zhao (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A T 0 space ( X , τ ) is a quasicontinuous space if and only if S I ( X ) is locally hypercompact if and only if ( τ S I , ) is a hypercontinuous lattice; (2) a T 0 space X is an S I -continuous space if and only if X is a meet continuous and quasicontinuous space; (3) if a C -space X is a well-filtered poset under its specialization order, then X is a quasicontinuous...

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .