Displaying similar documents to “A note on the existence of Gibbs marked point processes with applications in stochastic geometry”

On Paszkiewicz-type criterion for a.e. continuity of processes in L p -spaces

Jakub Olejnik (2010)

Banach Center Publications

Similarity:

In this paper we consider processes Xₜ with values in L p , p ≥ 1 on subsets T of a unit cube in ℝⁿ satisfying a natural condition of boundedness of increments, i.e. a process has bounded increments if for some non-decreasing f: ℝ₊ → ℝ₊ ||Xₜ-Xₛ||ₚ ≤ f(||t-s||), s,t ∈ T. We give a sufficient criterion for a.s. continuity of all processes with bounded increments on subsets of a given set T. This criterion turns out to be necessary for a wide class of functions f. We use a geometrical Paszkiewicz-type...

On smoothing properties of transition semigroups associated to a class of SDEs with jumps

Seiichiro Kusuoka, Carlo Marinelli (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in d driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process Y (i.e. Y = W T , where T is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process W ) and of an arbitrary Lévy process independent of Y , that the drift coefficient is continuous...

A remarkable σ -finite measure unifying supremum penalisations for a stable Lévy process

Yuko Yano (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The σ -finite measure 𝒫 sup which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s h -transform processes with respect to these functions are utilized for the construction of 𝒫 sup .

Stationary distributions for jump processes with memory

K. Burdzy, T. Kulczycki, R. L. Schilling (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We analyze a jump processes Z with a jump measure determined by a “memory” process S . The state space of ( Z , S ) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of ( Z , S ) is the product of the uniform probability measure and a Gaussian distribution.

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our...

Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times

Anton Bovier, Michael Eckhoff, Véronique Gayrard, Markus Klein (2004)

Journal of the European Mathematical Society

Similarity:

We develop a potential theoretic approach to the problem of metastability for reversible diffusion processes with generators of the form ϵ Δ + F ( · ) on d or subsets of d , where F is a smooth function with finitely many local minima. In analogy to previous work on discrete Markov chains, we show that metastable exit times from the attractive domains of the minima of F can be related, up to multiplicative errors that tend to one as ϵ 0 , to the capacities of suitably constructed sets. We show that...

Estimating the conditional expectations for continuous time stationary processes

Gusztáv Morvai, Benjamin Weiss (2020)

Kybernetika

Similarity:

One of the basic estimation problems for continuous time stationary processes X t , is that of estimating E { X t + β | X s : s [ 0 , t ] } based on the observation of the single block { X s : s [ 0 , t ] } when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.

On the strong Brillinger-mixing property of α -determinantal point processes and some applications

Lothar Heinrich (2016)

Applications of Mathematics

Similarity:

First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function C ( x , y ) defining an α -determinantal point process (DPP). Assuming absolute integrability of the function C 0 ( x ) = C ( o , x ) , we show that a stationary α -DPP with kernel function C 0 ( x ) is “strongly” Brillinger-mixing, implying, among others, that its tail- σ -field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch...

Small positive values for supercritical branching processes in random environment

Vincent Bansaye, Christian Böinghoff (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Branching Processes in Random Environment (BPREs) ( Z n : n 0 ) are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times. We describe the asymptotic behavior of ( 1 Z n k | Z 0 = i ) , k , i as n . More precisely, we characterize...

Initial measures for the stochastic heat equation

Daniel Conus, Mathew Joseph, Davar Khoshnevisan, Shang-Yuan Shiu (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a family of nonlinear stochastic heat equations of the form t u = u + σ ( u ) W ˙ , where W ˙ denotes space–time white noise, the generator of a symmetric Lévy process on 𝐑 , and σ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure u 0 . Tight a priori bounds on the moments of the solution are also obtained. In the particular case that f = c f ' ' for some c g t ; 0 , we prove that if u 0 is a finite measure of compact support, then the...

Universal rates for estimating the residual waiting time in an intermittent way

Gusztáv Morvai, Benjamin Weiss (2020)

Kybernetika

Similarity:

A simple renewal process is a stochastic process { X n } taking values in { 0 , 1 } where the lengths of the runs of 1 ’s between successive zeros are independent and identically distributed. After observing X 0 , X 1 , ... X n one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional...

Lévy processes conditioned on having a large height process

Mathieu Richard (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In the present work, we consider spectrally positive Lévy processes ( X t , t 0 ) not drifting to + and we are interested in conditioning these processes to reach arbitrarily large heights (in the sense of the height process associated with X ) before hitting 0 . This way we obtain a new conditioning of Lévy processes to stay positive. The (honest) law x of this conditioned process (starting at x g t ; 0 ) is defined as a Doob h -transform via a martingale. For Lévy processes with infinite variation paths,...

A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes

Dietmar Ferger (2021)

Kybernetika

Similarity:

For lower-semicontinuous and convex stochastic processes Z n and nonnegative random variables ϵ n we investigate the pertaining random sets A ( Z n , ϵ n ) of all ϵ n -approximating minimizers of Z n . It is shown that, if the finite dimensional distributions of the Z n converge to some Z and if the ϵ n converge in probability to some constant c , then the A ( Z n , ϵ n ) converge in distribution to A ( Z , c ) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular,...

Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem

Zdzisław Brzeźniak, Jan van Neerven (2000)

Studia Mathematica

Similarity:

Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process W t H t [ 0 , T ] with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) d X t = A X t d t + B d W t H (t∈ [0,T]), X 0 = 0 almost surely, where A is the generator of a C 0 -semigroup S ( t ) t 0 of bounded linear...