Models with second order properties. III. Omitting types for L(Q).
We give a model-theoretic interpretation of a result by Campana and Fujiki on the algebraicity of certain spaces of cycles on compact complex spaces. The model-theoretic interpretation is in the language of canonical bases, and says that if b,c are tuples in an elementary extension 𝓐* of the structure 𝓐 of compact complex manifolds, and b is the canonical base of tp(c/b), then tp(b/c) is internal to the sort (ℙ¹)*. The Zilber dichotomy in 𝓐* follows immediately (a type of U-rank 1 is locally...
Lattice effect algebras generalize orthomodular lattices and -algebras. We describe all complete modular atomic effect algebras. This allows us to prove the existence of ordercontinuous subadditive states (probabilities) on them. For the separable noncomplete ones we show that the existence of a faithful probability is equivalent to the condition that their MacNeille complete modular effect algebra.
In a Boolean Algebra B, an inequality f(x,x --> y)) ≤ y satisfying the condition f(1,1)=1, is considered for defining operations a --> b among the elements of B. These operations are called Conditionals'' for f. In this paper, we obtain all the boolean Conditionals and Internal Conditionals, and some of their properties as, for example, monotonicity are briefly discussed.
Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.
We show that an ideal I of an MV-algebra A is linearly ordered if and only if every non-zero element of I is a molecule. The set of molecules of A is contained in Inf(A) ∪ B2(A) where B2(A) is the set of all elements x ∈ A such that 2x is idempotent. It is shown that I ≠ {0} is weakly essential if and only if B⊥ ⊂ B(A). Connections are shown among the classes of ideals that have various combinations of the properties of being implicative, essential, weakly essential, maximal or prime.
The concept of monadic MV-algebra was recently introduced by A. Di Nola and R. Grigolia as an algebraic formalization of the many-valued predicate calculus described formerly by J. D. Rutledge [9]. This was also genaralized by J. Rachůnek and F. Švrček for commutative residuated -monoids since MV-algebras form a particular case of this structure. Basic algebras serve as a tool for the investigations of much more wide class of non-classical logics (including MV-algebras, orthomodular lattices and...
Here we initiate an investigation into the class of monadic -valued Łukasiewicz-Moisil algebras (or -algebras), namely -valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic -valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that is a discriminator variety and as a consequence, the...
We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".