Consistency proof without transfinite induction for a formal system for turing machines.
Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.
A subset of a Polish space X is called universally small if it belongs to each ccc σ-ideal with Borel base on X. Under CH in each uncountable Abelian Polish group G we construct a universally small subset A₀ ⊂ G such that |A₀ ∩ gA₀| = for each g ∈ G. For each cardinal number κ ∈ [5,⁺] the set A₀ contains a universally small subset A of G with sharp packing index equal to κ.
This is a sequel to [1]. Here we give careful attention to the difficulties of calculating Morley and U-rank of the infinite rank ω-stable theories constructed by variants of Hrushovski's methods. Sample result: For every k < ω, there is an ω-stable expansion of any algebraically closed field which has Morley rank ω × k. We include a corrected proof of the lemma in [1] establishing that the generic model is ω-saturated in the rank 2 case.
In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied.
In this paper, two construction methods have been proposed for uni-nullnorms on any bounded lattices. The difference between these two construction methods and the difference from the existing construction methods have been demonstrated and supported by an example. Moreover, the relationship between our construction methods and the existing construction methods for uninorms and nullnorms on bounded lattices are investigated. The charactertics of null-uninorms on bounded lattice are given and a...
In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore, we...
The Rowland Institute for Science, 100 Cambridge Parkway, Cambridge, Massachusetts 02142, U.S.A. A construction is presented for generating sentences that satisfy a recursively enumerable set of interpretability properties. This construction is then used to prove three previously announced results concerning the lattice of local interpretability types of theories (also known as the Lattice of Chapters).
Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi from words...
Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi...