Displaying 3201 – 3220 of 5989

Showing per page

On the fundamentals of fuzzy sets.

Robert Lowen (1984)

Stochastica

A considerable amount of research has been done on the notions of pseudo complement, intersection and union of fuzzy sets [1], [4], [11]. Most of this work consists of generalizations or alternatives of the basic concepts introduced by L. A. Zadeh in his famous paper [13]: generalization of the unit interval to arbitrary complete and completely distributive lattices or to Boolean algebras [2]; alternatives to union and intersection using the concept of t-norms [3], [10]; alternative complements...

On the generators of T-indistinguishability operator.

Joan Jacas (1988)

Stochastica

The structure of the generators' set of a T-indistinguishability operator is analyzed. A suitable characterization of such generators is given. T-indistinguishability operators generated by a single fuzzy set, in the sense of the representation problem, are studied.

On the hierarchies of Δ20-real numbers

Xizhong Zheng (2007)

RAIRO - Theoretical Informatics and Applications

A real number x is called Δ20 if its binary expansion corresponds to a Δ20-set of natural numbers. Such reals are just the limits of computable sequences of rational numbers and hence also called computably approximable. Depending on how fast the sequences converge, Δ20-reals have different levels of effectiveness. This leads to various hierarchies of Δ20 reals. In this survey paper we summarize several recent developments related to such kind of hierarchies shown by the author and his collaborators. ...

On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric

Dong Qiu, Chongxia Lu, Shuai Deng, Liang Wang (2014)

Kybernetika

In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.

On the ideal (v 0)

Piotr Kalemba, Szymon Plewik, Anna Wojciechowska (2008)

Open Mathematics

The σ-ideal (v 0) is associated with the Silver forcing, see [5]. Also, it constitutes the family of all completely doughnut null sets, see [9]. We introduce segment topologies to state some resemblances of (v 0) to the family of Ramsey null sets. To describe add(v 0) we adopt a proof of Base Matrix Lemma. Consistent results are stated, too. Halbeisen’s conjecture cov(v 0) = add(v 0) is confirmed under the hypothesis t = min{cf(c), r}. The hypothesis cov(v 0) = ω 1 implies that (v 0) has the ideal...

On the implicit function theorem in o-minimal structures

Zofia Ambroży, Wiesław Pawłucki (2015)

Banach Center Publications

A local-global version of the implicit function theorem in o-minimal structures and a generalization of the theorem of Wilkie on covering open sets by open cells are proven.

Currently displaying 3201 – 3220 of 5989