On the individual ergodic theorem on a logic
The functor taking global elements of Boolean algebras in the topos of sheaves on a complete Boolean algebra is shown to preserve and reflect injectivity as well as completeness. This is then used to derive a result of Bell on the Boolean Ultrafilter Theorem in -valued set theory and to prove that (i) the category of complete Boolean algebras and complete homomorphisms has no non-trivial injectives, and (ii) the category of frames has no absolute retracts.
The aim of this paper is to construct an -valued category whose objects are --ordered sets. To reach the goal, first, we construct a category whose objects are --ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an -valued category. Further we investigate the properties of this category, namely, we observe some special objects, special...
For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.
For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).
The aim of this paper is to discuss the motivation for a new general algebraic semantics for deductive systems, to introduce it, and to present an outline of its main features. Some tools from the theory of abstract logics are also introduced, and two classifications of deductive systems are analysed: one is based on the behaviour of the Leibniz congruence (the maximum congruence of a logical matrix) and the other on the behaviour of the Frege operator (which associates to every theory the interderivability...
Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a) LM. (b)...
We give bad (with respect to the reverse inclusion ordering) sequences of monomial ideals in two variables with Ackermannian lengths and extend this to multiple recursive lengths for more variables.
We show: (i) The countable axiom of choice is equivalent to each one of the statements: (a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is complete. (ii) The countable multiple choice axiom is equivalent to the statement: (a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact. (iii) The axiom of choice is equivalent to each one of the...
Minimal Hausdorff (Baire) group topologies of certain groups of transformations naturally occurring in analysis are studied. The results obtained are subsequently applied to show that, e.g., the homeomorphism groups of the rational and of the irrational numbers carry no Polish group topology. In answer to a question of A. S. Kechris it is shown that the group of Borel automorphisms of ℝ cannot be a Polish group either.
If κ is either supercompact or strong and δ < κ is α strong or α supercompact for every α < κ, then it is known δ must be (fully) strong or supercompact. We show this is not necessarily the case if κ is strongly compact.
Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals , an arbitrary nonempty system of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than is nontrivially solvable in ?
Many discussions have been made on the problem of(i) What are Fuzzy Sets?since the origin of the theory. Due to the structure of Fuzzy Sets the first impression that many people have is that Fuzzy Sets are the distribution of a probability. Recent developments of many theories of uncertainty measures (belief functions, possibility and fuzzy measures, capacities) can make also think that a Fuzzy Set is the distribution of an uncertainty measure. Other problems arising inside the theory of Fuzzy Sets...