Displaying 3221 – 3240 of 5989

Showing per page

On the injectivity of Boolean algebras

Bernhard Banaschewski (1993)

Commentationes Mathematicae Universitatis Carolinae

The functor taking global elements of Boolean algebras in the topos 𝐒𝐡 𝔅 of sheaves on a complete Boolean algebra 𝔅 is shown to preserve and reflect injectivity as well as completeness. This is then used to derive a result of Bell on the Boolean Ultrafilter Theorem in 𝔅 -valued set theory and to prove that (i) the category of complete Boolean algebras and complete homomorphisms has no non-trivial injectives, and (ii) the category of frames has no absolute retracts.

On the L -valued categories of L - E -ordered sets

Olga Grigorenko (2012)

Kybernetika

The aim of this paper is to construct an L -valued category whose objects are L - E -ordered sets. To reach the goal, first, we construct a category whose objects are L - E -ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an L -valued category. Further we investigate the properties of this category, namely, we observe some special objects, special...

On the lattice of deductive systems of a BL-algebra

Dumitru Bu§neag, Dana Piciu (2003)

Open Mathematics

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.

On the lattice of n-filters of an LM n-algebra

Dumitru Buşneag, Florentina Chirteş (2007)

Open Mathematics

For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).

On the Leibniz congruences

Josep Font (1993)

Banach Center Publications

The aim of this paper is to discuss the motivation for a new general algebraic semantics for deductive systems, to introduce it, and to present an outline of its main features. Some tools from the theory of abstract logics are also introduced, and two classifications of deductive systems are analysed: one is based on the behaviour of the Leibniz congruence (the maximum congruence of a logical matrix) and the other on the behaviour of the Frege operator (which associates to every theory the interderivability...

On the Leibniz-Mycielski axiom in set theory

Ali Enayat (2004)

Fundamenta Mathematicae

Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that ( V α , ) satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a) LM. (b)...

On the metric reflection of a pseudometric space in ZF

Horst Herrlich, Kyriakos Keremedis (2015)

Commentationes Mathematicae Universitatis Carolinae

We show: (i) The countable axiom of choice 𝐂𝐀𝐂 is equivalent to each one of the statements: (a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is complete. (ii) The countable multiple choice axiom 𝐂𝐌𝐂 is equivalent to the statement: (a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact. (iii) The axiom of choice 𝐀𝐂 is equivalent to each one of the...

On the non-existence of certain group topologies

Christian Rosendal (2005)

Fundamenta Mathematicae

Minimal Hausdorff (Baire) group topologies of certain groups of transformations naturally occurring in analysis are studied. The results obtained are subsequently applied to show that, e.g., the homeomorphism groups of the rational and of the irrational numbers carry no Polish group topology. In answer to a question of A. S. Kechris it is shown that the group of Borel automorphisms of ℝ cannot be a Polish group either.

On the nontrivial solvability of systems of homogeneous linear equations over in ZFC

Jan Šaroch (2020)

Commentationes Mathematicae Universitatis Carolinae

Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals κ , an arbitrary nonempty system S of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than κ is nontrivially solvable in ?

On the notion of Fuzzy Set.

Nando Prati (1992)

Stochastica

Many discussions have been made on the problem of(i) What are Fuzzy Sets?since the origin of the theory. Due to the structure of Fuzzy Sets the first impression that many people have is that Fuzzy Sets are the distribution of a probability. Recent developments of many theories of uncertainty measures (belief functions, possibility and fuzzy measures, capacities) can make also think that a Fuzzy Set is the distribution of an uncertainty measure. Other problems arising inside the theory of Fuzzy Sets...

Currently displaying 3221 – 3240 of 5989