Displaying 21 – 40 of 44

Showing per page

Weighted sums of aggregation operators.

Tomasa Calvo, Bernard De Baets, Radko Mesiar (1999)

Mathware and Soft Computing

The aim of this work is to investigate when a weighted sum, or in other words, a linear combination, of two or more aggregation operators leads to a new aggregation operator. For weights belonging to the real unit interval, we obtain a convex combination and the answer is known to be always positive. However, we will show that also other weights can be used, depending upon the aggregation operators involved. A first set of suitable weights is obtained by a general method based on the variation of...

Well-quasi-ordering Aronszajn lines

Carlos Martinez-Ranero (2011)

Fundamenta Mathematicae

We show that, assuming PFA, the class of all Aronszajn lines is well-quasi-ordered by embeddability.

What machines can and cannot do.

Luis M. Laita, Roanes-Lozano, Luis De Ledesma Otamendi (2007)

RACSAM

In this paper, the questions of what machines cannot do and what they can do will be treated by examining the ideas and results of eminent mathematicians. Regarding the question of what machines cannot do, we will rely on the results obtained by the mathematicians Alan Turing and Kurt G¨odel. Turing machines, their purpose of defining an exact definition of computation and the relevance of Church-Turing thesis in the theory of computability will be treated in detail. The undecidability of the “Entscheidungsproblem”...

When a first order T has limit models

Saharon Shelah (2012)

Colloquium Mathematicae

We sort out to a large extent when a (first order complete theory) T has a superlimit model in a cardinal λ. Also we deal with related notions of being limit.

When does the Katětov order imply that one ideal extends the other?

Paweł Barbarski, Rafał Filipów, Nikodem Mrożek, Piotr Szuca (2013)

Colloquium Mathematicae

We consider the Katětov order between ideals of subsets of natural numbers (" K ") and its stronger variant-containing an isomorphic ideal ("⊑ "). In particular, we are interested in ideals for which K for every ideal . We find examples of ideals with this property and show how this property can be used to reformulate some problems known from the literature in terms of the Katětov order instead of the order "⊑ " (and vice versa).

When is 𝐍 Lindelöf?

Horst Herrlich, George E. Strecker (1997)

Commentationes Mathematicae Universitatis Carolinae

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) is a Lindelöf space, (2) is a Lindelöf space, (3) is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of is separable, (6) in , a point x is in the closure of a set A iff there exists a sequence in A that converges to x , (7) a function f : is continuous at a point x iff f is sequentially continuous at x , (8)...

When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P.J. Cameron

Maurice Pouzet (2008)

RAIRO - Theoretical Informatics and Applications

Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their...

When is the union of an increasing family of null sets?

Juan González-Hernández, Fernando Hernández-Hernández, César E. Villarreal (2007)

Commentationes Mathematicae Universitatis Carolinae

We study the problem in the title and show that it is equivalent to the fact that every set of reals is an increasing union of measurable sets. We also show the relationship of it with Sierpi'nski sets.

Why semisets?

Petr Hájek (1973)

Commentationes Mathematicae Universitatis Carolinae

Currently displaying 21 – 40 of 44