An invariant for difference field extensions
In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.
In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.
The present study aimed to introduce -fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of -fold (positive) implicative IVRL-extended filters and -fold (positive) implicative triangle algebras were defined. Afterwards, several characterizations of the algebras were presented, and the correlations between the -fold IVRL-extended filters, -fold (positive) implicative algebras, and the Gödel triangle algebra were discussed.
Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define to be X ∩ M with topology generated by . Suppose is homeomorphic to the irrationals; must ? We have partial results. We also answer a question of Gruenhage by showing that if is homeomorphic to the “Long Cantor Set”, then .
We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces of all real continuous functions defined on the compact spaces , the topological product of the Cantor cubes with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently, it is relatively...
We present an example of an o-minimal structure which does not admit cellular decomposition. To this end, we construct a function whose germ at the origin admits a representative for each integer , but no representative. A number theoretic condition on the coefficients of the Taylor series of then insures the quasianalyticity of some differential algebras induced by . The o-minimality of the structure generated by is deduced from this quasianalyticity property.
In Chajda's paper (2014), to an arbitrary BCI-algebra the author assigned an ordered structure with one binary operation which possesses certain antitone mappings. In the present paper, we show that a similar construction can be done also for pseudo-BCI-algebras, but the resulting structure should have two binary operations and a set of couples of antitone mappings which are in a certain sense mutually inverse. The motivation for this approach is the well-known fact that every commutative BCK-algebra...
For a vector field ξ on ℝ² we construct, under certain assumptions on ξ, an ordered model-theoretic structure associated to the flow of ξ. We do this in such a way that the set of all limit cycles of ξ is represented by a definable set. This allows us to give two restatements of Dulac’s Problem for ξ - that is, the question whether ξ has finitely many limit cycles-in model-theoretic terms, one involving the recently developed notion of -rank and the other involving the notion of o-minimality.
We prove that, with high probability, the space complexity of refuting a random unsatisfiable Boolean formula in -CNF on variables and clauses is .
We prove that, with high probability, the space complexity of refuting a random unsatisfiable Boolean formula in k-CNF on n variables and m = Δn clauses is .