On a problem of Erdös and Tarski
Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn -spaces, whose product is a non-Fréchet-Urysohn -space. This gives a consistent negative answer to a question raised by T. Nogura.
The Kalikow problem for a pair (λ,κ) of cardinal numbers,λ > κ (in particular κ = 2) is whether we can map the family of ω-sequences from λ to the family of ω-sequences from κ in a very continuous manner. Namely, we demand that for η,ν ∈ ω we have: η, ν are almost equal if and only if their images are. We show consistency of the negative answer, e.g., for but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants.
There is a set U of reals such that for every analytic set A there is a continuous function f which maps U bijectively to A.
Once the concept of De Morgan algebra of fuzzy sets on a universe X can be defined, we give a necessary and sufficient condition for a De Morgan algebra to be isomorphic to (represented by) a De Morgan algebra of fuzzy sets.
It was shown that there is a statistical learning problem – a version of the expectation maximization (EMX) problem – whose consistency in a domain of cardinality continuum under the family of purely atomic probability measures and with finite hypotheses is equivalent to a version of the continuum hypothesis, and thus independent of ZFC. K. P. Hart had subsequently proved that no solution to the EMX problem can be Borel measurable with regard to an uncountable standard Borel structure on , and...
Let be the set of positive integers and let . We denote by the arithmetic function given by , where is the number of positive divisors of . Moreover, for every we denote by the sequence We present classical and nonclassical notes on the sequence , where , , are understood as parameters.
This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions for which a uninorm of this special class exists...