Negative Modal Operators in Intuitionistic Logic
A "partial" generalization of Fine's definition [Fin] of normal forms in normal minimal modal logic is given. This means quick access to complete axiomatizations and decidability proofs for partial modal logic [Thi].
We prove the undecidability of Core XPath 1.0 (CXP) [G. Gottlob and C. Koch, in Proc. of 17th Ann. IEEE Symp. on Logic in Computer Science, LICS ’02 (Copenhagen, July 2002). IEEE CS Press (2002) 189–202.] extended with an Inflationary Fixed Point (IFP) operator. More specifically, we prove that the satisfiability problem of this language is undecidable. In fact, the fragment of CXP+IFP containing only the self and descendant axes is already undecidable.
A language grounding problem is considered for nonuniform sets of modal conjunctions consisting of conjunctions extended with more than one modal operator of knowledge, belief or possibility. The grounding is considered in the context of semiotic triangles built from language symbols, communicative cognitive agents and external objects. The communicative cognitive agents are assumed to be able to observe external worlds and store the results of observations in internal knowledge bases. It is assumed...
The polyadic algebras that arise from the algebraization of the first-order extensions of a SIC are characterized and a representation theorem is proved. Standard implicational calculi (SIC)'s were considered by H. Rasiowa [19] and include classical and intuitionistic logic and their various weakenings and fragments, the many-valued logics of Post and Łukasiewicz, modal logics that admit the rule of necessitation, BCK logic, etc.