The Completeness And Compactness Of A Three-Valued First-Order Logic.
This paper establishes the equivalence between multilayer feedforward networks and linear combinations of Lukasiewicz propositions. In this sense, multilayer forward networks have a logic interpretation, which should permit to apply logical techniques in the neural networks framework.
The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized...
We present the basic theory of the most natural algebraic counterpart of the ℵ0-valued Lukasiewicz calculus, strictly logically formulated. After showing its lattice structure and its relation to C. C. Chang's MV-algebras we study the implicative filters and prove its equivalence to congruence relations. We present some properties of the variety of all Wajsberg algebras, among which there is a representation theorem. Finally we give some characterizations of linear, simple and semisimple algebras....