Second order arithmetic and autonomous computability.
We give an equivalent, but simpler formulation of the axiom SEP, which was introduced in [9] in order to capture some of the combinatorial behaviour of models of set theory obtained by adding Cohen reals to a model of CH. Our formulation shows that many of the consequences of the weak Freese-Nation property of 𝒫(ω) studied in [6] already follow from SEP. We show that it is consistent that SEP holds while 𝒫(ω) fails to have the (ℵ₁,ℵ ₀)-ideal property introduced in [2]. This answers a question...
McAloon showed that if 𝓐 is a nonstandard model of IΔ₀, then some initial segment of 𝓐 is a nonstandard model of PA. Sommer and D'Aquino characterized, in terms of the Wainer functions, the elements that can belong to such an initial segment. The characterization used work of Ketonen and Solovay, and Paris. Here we give conditions on a model 𝓐 of IΔ₀ guaranteeing that there is an n-elementary initial segment that is a nonstandard model of PA. We also characterize the elements that can be included....