Page 1

Displaying 1 – 3 of 3

Showing per page

Semi-monotone sets

Saugata Basu, Andrei Gabrielov, Nicolai Vorobjov (2013)

Journal of the European Mathematical Society

A coordinate cone in n is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of n , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone...

Some model theory of SL(2,ℝ)

Jakub Gismatullin, Davide Penazzi, Anand Pillay (2015)

Fundamenta Mathematicae

We study the action of G = SL(2,ℝ), viewed as a group definable in the structure M = (ℝ,+,×), on its type space S G ( M ) . We identify a minimal closed G-flow I and an idempotent r ∈ I (with respect to the Ellis semigroup structure * on S G ( M ) ). We also show that the “Ellis group” (r*I,*) is nontrivial, in fact it is the group with two elements, yielding a negative answer to a question of Newelski.

Super real closed rings

Marcus Tressl (2007)

Fundamenta Mathematicae

A super real closed ring is a commutative ring equipped with the operation of all continuous functions ℝⁿ → ℝ. Examples are rings of continuous functions and super real fields attached to z-prime ideals in the sense of Dales and Woodin. We prove that super real closed rings which are fields are an elementary class of real closed fields which carry all o-minimal expansions of the real field in a natural way. The main part of the paper develops the commutative algebra of super real closed rings, by...

Currently displaying 1 – 3 of 3

Page 1