Some observations on Uniform Reduction for properties invariant on the range of definable relations
Nell'ambito della Teoria dei Modelli Astratta è possibile dimostrare che una logica compatta L è univocamente determinata dalla sua relazione di L-elementare equivalenza (Teorema 1). Si enunciano poi alcuni risultati sulle logiche massime correlate a certe relazioni di equivalenza e sulle logiche compatte generate da qualche sistema di Fraissé-Ehrenfeucht.
We continue the study of finitary abstract elementary classes beyond ℵ₀-stability. We suggest a possible notion of superstability for simple finitary AECs, and derive from this notion several good properties for independence. We also study constructible models and the behaviour of Galois types and weak Lascar strong types in this context. We show that superstability is implied by a-categoricity in a suitable cardinal. As an application we prove the following theorem: Assume that is a simple, tame,...