Embedding lattices in the Kleene degrees
Under ZFC+CH, we prove that some lattices whose cardinalities do not exceed can be embedded in some local structures of Kleene degrees.
Under ZFC+CH, we prove that some lattices whose cardinalities do not exceed can be embedded in some local structures of Kleene degrees.
We consider shifted equality sets of the form , where and are nonerasing morphisms and is a letter. We are interested in the family consisting of the languages , where is a coding and is a shifted equality set. We prove several closure properties for this family. Moreover, we show that every recursively enumerable language is a projection of a shifted equality set, that is, for some (nonerasing) morphisms and and a letter , where deletes the letters not in . Then we deduce...
We consider shifted equality sets of the form EG(a,g1,g2) = {ω | g1(ω) = ag2(ω)}, where g1 and g2 are nonerasing morphisms and a is a letter. We are interested in the family consisting of the languages h(EG(J)), where h is a coding and (EG(J)) is a shifted equality set. We prove several closure properties for this family. Moreover, we show that every recursively enumerable language L ⊆ A* is a projection of a shifted equality set, that is, L = πA(EG(a,g1,g2)) for some (nonerasing) morphisms g1...
We define H- and EH-expressions as extensions of regular expressions by adding homomorphic and iterated homomorphic replacement as new operations, resp. The definition is analogous to the extension given by Gruska in order to characterize context-free languages. We compare the families of languages obtained by these extensions with the families of regular, linear context-free, context-free, and EDT0L languages. Moreover, relations to language families based on patterns, multi-patterns,...
This paper is a survey of results on finite variable logics in finite model theory. It focusses on the common underlying techniques that unite many such results.
We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.