Displaying 81 – 100 of 995

Showing per page

Bad Wadge-like reducibilities on the Baire space

Luca Motto Ros (2014)

Fundamenta Mathematicae

We consider various collections of functions from the Baire space ω ω into itself naturally arising in (effective) descriptive set theory and general topology, including computable (equivalently, recursive) functions, contraction mappings, and functions which are nonexpansive or Lipschitz with respect to suitable complete ultrametrics on ω ω (compatible with its standard topology). We analyze the degree-structures induced by such sets of functions when used as reducibility notions between subsets of...

Banach’s Continuous Inverse Theorem and Closed Graph Theorem

Hideki Sakurai, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

In this article we formalize one of the most important theorems of linear operator theory - the Closed Graph Theorem commonly used in a standard text book such as [10] in Chapter 24.3. It states that a surjective closed linear operator between Banach spaces is bounded.

Call-by-value solvability

Luca Paolini, Simona Ronchi Della Rocca (1999)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Call-by-value Solvability

Luca Paolini, Simona Ronchi Della Rocca (2010)

RAIRO - Theoretical Informatics and Applications

The notion of solvability in the call-by-value λ-calculus is defined and completely characterized, both from an operational and a logical point of view. The operational characterization is given through a reduction machine, performing the classical β-reduction, according to an innermost strategy. In fact, it turns out that the call-by-value reduction rule is too weak for capturing the solvability property of terms. The logical characterization is given through an intersection type assignment system,...

Choice functions and well-orderings over the infinite binary tree

Arnaud Carayol, Christof Löding, Damian Niwinski, Igor Walukiewicz (2010)

Open Mathematics

We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical arguments. Our proof is much simpler and only uses basic tools from automata theory. We show how the result can be used to prove the inherent ambiguity of languages of infinite trees. In a second part we strengthen the result of the non-existence of an MSO-definable well-founded...

Coherent randomness tests and computing the K -trivial sets

Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, Dan Turetsky (2016)

Journal of the European Mathematical Society

We introduce Oberwolfach randomness, a notion within Demuth’s framework of statistical tests with moving components; here the components’ movement has to be coherent across levels. We show that a ML-random set computes all K -trivial sets if and only if it is not Oberwolfach random, and indeed that there is a K -trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the...

Currently displaying 81 – 100 of 995