Infinite Products of Alephs.
For an arbitrary infinite cardinal , we define classes of -cslender and -tslender modules as well as related classes of -hmodules and initiate a study of these classes.
The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist.
We study free sequences and related notions on Boolean algebras. A free sequence on a BA is a sequence of elements of , with an ordinal, such that for all with we have . A free sequence of length exists iff the Stone space has a free sequence of length in the topological sense. A free sequence is maximal iff it cannot be extended at the end to a longer free sequence. The main notions studied here are the spectrum function and the associated min-max function Among the results...
Text je stručným přehledem nejdůležitějších vlastností nekonečných množin, mimo jiné vyvrací omyl publikovaný v článku Kuřina & Vondrová: Nekonečno, jak to vlastně je, UM 2003. "Zip Petera Zamarovského" není bijekcí mezi (0;1)x(0;1) a (0;1), ale pouze injekcí, tudíž ekvivalenci množiny všech bodů čtverce a úsečky nedokazuje. V článku je naznačen jiný důkaz.
By studying dimensional types of metric scattered spaces, we consider the wider class of metric σ-discrete spaces. Applying techniques relevant to this wider class, we present new proofs of some embeddable properties of countable metric spaces in such a way that they can be generalized onto uncountable metric scattered spaces. Related topics are also explored, which gives a few new results.
We show that there are stationary subsets of uncountable spaces which do not reflect.