Displaying 281 – 300 of 370

Showing per page

Rothberger gaps in fragmented ideals

Jörg Brendle, Diego Alejandro Mejía (2014)

Fundamenta Mathematicae

The Rothberger number (ℐ) of a definable ideal ℐ on ω is the least cardinal κ such that there exists a Rothberger gap of type (ω,κ) in the quotient algebra (ω)/ℐ. We investigate (ℐ) for a class of F σ ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ₁, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum...

Rudin-like sets and hereditary families of compact sets

Étienne Matheron, Miroslav Zelený (2005)

Fundamenta Mathematicae

We show that a comeager Π₁¹ hereditary family of compact sets must have a dense G δ subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true F σ δ sets.

Selivanovski hard sets are hard

Janusz Pawlikowski (2015)

Fundamenta Mathematicae

Let H Z 2 ω . For n ≥ 2, we prove that if Selivanovski measurable functions from 2 ω to Z give as preimages of H all Σₙ¹ subsets of 2 ω , then so do continuous injections.

Separating equivalence classes

Jindřich Zapletal (2018)

Commentationes Mathematicae Universitatis Carolinae

Given a countable Borel equivalence relation, I introduce an invariant measuring how difficult it is to find Borel sets separating its equivalence classes. I evaluate these invariants in several standard generic extensions.

Sigma-idéaux polaires et ensembles d'unicité dans les groupes abéliens localement compacts

Étienne Matheron (1996)

Annales de l'institut Fourier

On étend au cadre des groupes abéliens localement compacts certains résultats obtenus notamment par G. Debs, R. Kaufman, A. Kechris, A. Louveau et J. Saint Raymond sur la structure des fermés d’unicité et d’unicité au sens large du cercle unité. On montre également que de très nombreuses familles de compacts issues de l’Analyse Harmonique sont exactement de troisième classe dans la hiérarchie de Baire. Comme application, on donne une démonstration simple de l’existence d’ensembles de Dirichlet qui...

Some examples of true F σ δ sets

Marek Balcerzak, Udayan Darji (2000)

Colloquium Mathematicae

Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true F σ δ sets.

Currently displaying 281 – 300 of 370