Displaying 121 – 140 of 154

Showing per page

Spectra of uniformity

Yair Hayut, Asaf Karagila (2019)

Commentationes Mathematicae Universitatis Carolinae

We study some limitations and possible occurrences of uniform ultrafilters on ordinals without the axiom of choice. We prove an Easton-like theorem about the possible spectrum of successors of regular cardinals which carry uniform ultrafilters; we also show that this spectrum is not necessarily closed.

Stranger things about forcing without AC

Martin Goldstern, Lukas D. Klausner (2020)

Commentationes Mathematicae Universitatis Carolinae

Typically, set theorists reason about forcing constructions in the context of Zermelo--Fraenkel set theory (ZFC). We show that without the axiom of choice (AC), several simple properties of forcing posets fail to hold, one of which answers Miller's question from the work: Arnold W. Miller, {Long Borel hierarchies}, MLQ Math. Log. Q. {54} (2008), no. 3, 307--322.

The distributivity numbers of finite products of P(ω)/fin

Saharon Shelah, Otmar Spinas (1998)

Fundamenta Mathematicae

Generalizing [ShSp], for every n < ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o. ( P ( ω ) / f i n ) n , is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n < ω, hence by the first result, consistently they collapse it below ℌ(n).

The even-odd hat problem

Daniel J. Velleman (2012)

Fundamenta Mathematicae

We answer a question of C. Hardin and A. Taylor concerning a hat-guessing game.

Currently displaying 121 – 140 of 154