Displaying 61 – 80 of 183

Showing per page

Some 2-point sets

James H. Schmerl (2010)

Fundamenta Mathematicae

Chad, Knight & Suabedissen [Fund. Math. 203 (2009)] recently proved, assuming CH, that there is a 2-point set included in the union of countably many concentric circles. This result is obtained here without any additional set-theoretic hypotheses.

Some applications of Sargsyan's equiconsistency method

Arthur W. Apter (2012)

Fundamenta Mathematicae

We apply techniques due to Sargsyan to reduce the consistency strength of the assumptions used to establish an indestructibility theorem for supercompactness. We then show how these and additional techniques due to Sargsyan may be employed to establish an equiconsistency for a related indestructibility theorem for strongness.

Some cardinal characteristics of ordered sets

Vítězslav Novák (1998)

Czechoslovak Mathematical Journal

For ordered (= partially ordered) sets we introduce certain cardinal characteristics of them (some of those are known). We show that these characteristics—with one exception—coincide.

Some combinatorial principles defined in terms of elementary submodels

Sakaé Fuchino, Stefan Geschke (2004)

Fundamenta Mathematicae

We give an equivalent, but simpler formulation of the axiom SEP, which was introduced in [9] in order to capture some of the combinatorial behaviour of models of set theory obtained by adding Cohen reals to a model of CH. Our formulation shows that many of the consequences of the weak Freese-Nation property of 𝒫(ω) studied in [6] already follow from SEP. We show that it is consistent that SEP holds while 𝒫(ω) fails to have the (ℵ₁,ℵ ₀)-ideal property introduced in [2]. This answers a question...

Some combinatorics involving ξ-large sets

Teresa Bigorajska, Henryk Kotlarski (2002)

Fundamenta Mathematicae

We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here ξ < ε₀ and the notion of largeness is in the sense of Hardy hierarchy.

Some complexity results in topology and analysis

Steve Jackson, R. Mauldin (1992)

Fundamenta Mathematicae

If X is a compact metric space of dimension n, then K(X), the n- dimensional kernel of X, is the union of all n-dimensional Cantor manifolds in X. Aleksandrov raised the problem of what the descriptive complexity of K(X) could be. A straightforward analysis shows that if X is an n-dimensional complete separable metric space, then K(X) is a Σ 2 1 or PCA set. We show (a) there is an n-dimensional continuum X in n + 1 for which K(X) is a complete Π 1 1 set. In particular, K ( X ) Π 1 1 - Σ 1 1 ; K(X) is coanalytic but is not an analytic...

Currently displaying 61 – 80 of 183