Shelah's Singular Compactness Theorem.
On étend au cadre des groupes abéliens localement compacts certains résultats obtenus notamment par G. Debs, R. Kaufman, A. Kechris, A. Louveau et J. Saint Raymond sur la structure des fermés d’unicité et d’unicité au sens large du cercle unité. On montre également que de très nombreuses familles de compacts issues de l’Analyse Harmonique sont exactement de troisième classe dans la hiérarchie de Baire. Comme application, on donne une démonstration simple de l’existence d’ensembles de Dirichlet qui...
Fuzzy set theory is based on a `fuzzification' of the predicate in (element of), the concept of membership degrees is considered as fundamental. In this paper we elucidate the connection between indistinguishability modelled by fuzzy equivalence relations and fuzzy sets. We show that the indistinguishability inherent to fuzzy sets can be computed and that this indistinguishability cannot be overcome in approximate reasoning. For our investigations we generalize from the unit interval as the basis...
We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).
We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is an unbounded set of singular cardinals which witness the only failures of GCH in the universe. In this model, the structure of the class of supercompact cardinals can be arbitrary.
A graph on is called -smooth if for each uncountable , is isomorphic to for some finite . We show that in various models of ZFC if a graph is -smooth, then is necessarily trivial, i.eėither complete or empty. On the other hand, we prove that the existence of a non-trivial, -smooth graph is also consistent with ZFC.
Mas et al. adapted the notion of smoothness, introduced by Godo and Sierra, and discussed two kinds of smooth implications (a discrete counterpart of continuous fuzzy implications) on a finite chain. This work is devoted to exploring the formal relations between smoothness and other six properties of implications on a finite chain. As a byproduct, several classes of smooth implications on a finite chain are characterized.
En su trabajo de 1973, ya clásico, Bellman y Giertz probaron que P(X) es un retículo distributivo con máximo y mínimo sólo (con hipótesis muy razonables) bajo las usuales definiciones (A U B)(x) = máx {A(x),B(x)}, (A ∩ B)(x) = mín {A(x),B(x)}, tratando escasamente el formalismo analítico relativo a la negación. En el presente trabajo se prueba que tal P(X) es un álgebra de DeMorgan si y sólo si la función de negación posee generador aditivo y que tales negaciones constituyen, en un cierto grupo...