Lattices of fuzzy objects.
L’« axiome du choix simple » est le principe selon lequel on peut choisir un élément dans tout ensemble non vide. Cet « autre axiome du choix » a une histoire paradoxale et riche, dont la première partie de cet article recherche les traces et repère les enjeux. Apparaissent comme décisifs le statut de la théorie des ensembles dans les mathématiques intuitionnistes, mais aussi la tension croissante entre technicisation de la logique et réflexion épistémologique des mathématiciens. La deuxième partie...
Uninorms are important generalizations of triangular norms and conorms, with a neutral element lying anywhere in the unit interval, and left (right) semi-uninorms are non-commutative and non-associative extensions of uninorms. In this paper, we firstly introduce the concepts of left and right semi-uninorms on a complete lattice and illustrate these notions by means of some examples. Then, we lay bare the formulas for calculating the upper and lower approximation left (right) semi-uninorms of a binary...
We show that a natural quotient of the projective Fraïssé limit of a family that consists of finite rooted trees is the Lelek fan. Using this construction, we study properties of the Lelek fan and of its homeomorphism group. We show that the Lelek fan is projectively universal and projectively ultrahomogeneous in the class of smooth fans. We further show that the homeomorphism group of the Lelek fan is totally disconnected, generated by every neighbourhood of the identity, has a dense conjugacy...
We answer a question of Darji and Keleti by proving that there exists a compact set C₀ ⊂ ℝ of measure zero such that for every perfect set P ⊂ ℝ there exists x ∈ ℝ such that (C₀+x) ∩ P is uncountable. Using this C₀ we answer a question of Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from ) that less than many translates of a compact set of measure zero can cover ℝ.
We construct two models for the level by level equivalence between strong compactness and supercompactness in which if κ is λ supercompact and λ ≥ κ is regular, we are able to determine exactly the number of normal measures carries. In the first of these models, carries many normal measures, the maximal number. In the second of these models, carries many normal measures, except if κ is a measurable cardinal which is not a limit of measurable cardinals. In this case, κ (and hence also )...
We construct three models containing exactly one supercompact cardinal in which level by level inequivalence between strong compactness and supercompactness holds. In the first two models, below the supercompact cardinal κ, there is a non-supercompact strongly compact cardinal. In the last model, any suitably defined ground model Easton function is realized.