Displaying 101 – 120 of 515

Showing per page

Deductive systems of BCK-algebras

Sergio A. Celani (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we shall give some results on irreducible deductive systems in BCK-algebras and we shall prove that the set of all deductive systems of a BCK-algebra is a Heyting algebra. As a consequence of this result we shall show that the annihilator F * of a deductive system F is the the pseudocomplement of F . These results are more general than that the similar results given by M. Kondo in [7].

Definability within structures related to Pascal’s triangle modulo an integer

Alexis Bès, Ivan Korec (1998)

Fundamenta Mathematicae

Let Sq denote the set of squares, and let S Q n be the squaring function restricted to powers of n; let ⊥ denote the coprimeness relation. Let B n ( x , y ) = ( x + y x ) M O D n . For every integer n ≥ 2 addition and multiplication are definable in the structures ⟨ℕ; Bn,⊥⟩ and ⟨ℕ; Bn,Sq⟩; thus their elementary theories are undecidable. On the other hand, for every prime p the elementary theory of ⟨ℕ; Bp,SQp⟩ is decidable.

Diagonal reasonings in mathematical logic

Zofia Adamowicz (1995)

Banach Center Publications

First we show a few well known mathematical diagonal reasonings. Then we concentrate on diagonal reasonings typical for mathematical logic.

Diagonalization in proof complexity

Jan Krajíček (2004)

Fundamenta Mathematicae

We study diagonalization in the context of implicit proofs of [10]. We prove that at least one of the following three conjectures is true: ∙ There is a function f: 0,1* → 0,1 computable in that has circuit complexity 2 Ω ( n ) . ∙ ≠ co . ∙ There is no p-optimal propositional proof system. We note that a variant of the statement (either ≠ co or ∩ co contains a function 2 Ω ( n ) hard on average) seems to have a bearing on the existence of good proof complexity generators. In particular, we prove that if a minor variant...

Currently displaying 101 – 120 of 515