Displaying 21 – 40 of 156

Showing per page

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions...

Automorphisms of concrete logics

Mirko Navara, Josef Tkadlec (1991)

Commentationes Mathematicae Universitatis Carolinae

The main result of this paper is Theorem 3.3: Every concrete logic (i.e., every set-representable orthomodular poset) can be enlarged to a concrete logic with a given automorphism group and with a given center. Since every sublogic of a concrete logic is concrete, too, and since not every state space of a (general) quantum logic is affinely homeomorphic to the state space of a concrete logic [8], our result seems in a sense the best possible. Further, we show that every group is an automorphism...

Axiomatizing quantum MV-algebras.

Roberto Giuntini (1997)

Mathware and Soft Computing

We introduce the notion of p-ideal of a QMV-algebra and we prove that the class of all p-ideals of a QMV-algebra M is in one-to-one correspondence with the class of all congruence relations of M.

Compatibility and central elements in pseudo-effect algebras

Paolo Vitolo (2010)

Kybernetika

An equivalent definition of compatibility in pseudo-effect algebras is given, and its relationships with central elements are investigated. Furthermore, pseudo-MV-algebras are characterized among pseudo-effect algebras by means of compatibility.

Concrete quantum logics with generalised compatibility

Josef Tkadlec (1998)

Mathematica Bohemica

We present three results stating when a concrete (=set-representable) quantum logic with covering properties (generalization of compatibility) has to be a Boolean algebra. These results complete and generalize some previous results [3, 5] and answer partiallz a question posed in [2].

Congruences and ideals in lattice effect algebras as basic algebras

Sylvia Pulmannová, Elena Vinceková (2009)

Kybernetika

Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.

Conservación de convergencias en G(H) por un operador lineal.

M.ª Carmen de las Obras Loscertales y Nasarre (1986)

Stochastica

Given a real separable Hilbert space H, we denote with S = {E(n) | n belongs to N} a sequence of closed linear subspaces of H.In previous papers, the strong, weak, a--> and b--> convergences are defined and characterized. Now, given a sequence S with strong, weak, a--> or b--> limit, and a linear operator of H, A, the sequence AS is studied.

Considering uncertainty and dependence in Boolean, quantum and fuzzy logics

Mirko Navara, Pavel Pták (1998)

Kybernetika

A degree of probabilistic dependence is introduced in the classical logic using the Frank family of t -norms known from fuzzy logics. In the quantum logic a degree of quantum dependence is added corresponding to the level of noncompatibility. Further, in the case of the fuzzy logic with P -states, (resp. T -states) the consideration turned out to be fully analogous to (resp. considerably different from) the classical situation.

D -posets

František Kôpka, Ferdinand Chovanec (1994)

Mathematica Slovaca

Descriptions of state spaces of orthomodular lattices (the hypergraph approach)

Mirko Navara (1992)

Mathematica Bohemica

Using the general hypergraph technique developed in [7], we first give a much simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic to the state space of an orthomodular lattice. We also present partial solutions to open questions formulated in [10] - we show that not every compact convex set has to be a state space of a unital orthomodular lattice and that for unital orthomodular lattices the state space characterization can be obtained in the context of unital...

Currently displaying 21 – 40 of 156