On the convergence and absolute continuity of signed states on a logic
For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.
For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).
The aim of this paper is to discuss the motivation for a new general algebraic semantics for deductive systems, to introduce it, and to present an outline of its main features. Some tools from the theory of abstract logics are also introduced, and two classifications of deductive systems are analysed: one is based on the behaviour of the Leibniz congruence (the maximum congruence of a logical matrix) and the other on the behaviour of the Frege operator (which associates to every theory the interderivability...