On fuzzy -algebras
The fuzzification of (normal) -subalgebras is considered, and some related properties are investigated. A characterization of a fuzzy -algebra is given.
The fuzzification of (normal) -subalgebras is considered, and some related properties are investigated. A characterization of a fuzzy -algebra is given.
The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and -fuzzy metric spaces proposed by Sedghi and Shobe. Since...
In this paper, we define and characterize the notions of (implicative, maximal, prime) ideals in hoops. Then we investigate the relation between them and prove that every maximal implicative ideal of a -hoop with double negation property is a prime one. Also, we define a congruence relation on hoops by ideals and study the quotient that is made by it. This notion helps us to show that an ideal is maximal if and only if the quotient hoop is a simple MV-algebra. Also, we investigate the relationship...
We introduce a new concept of ideals in BCC-algebras and describe connections between such ideals and congruences.
In this paper, we introduce a new class of residuated lattices called De Morgan residuated lattices, we show that the variety of De Morgan residuated lattices includes important subvarieties of residuated lattices such as Boolean algebras, MV-algebras, BL-algebras, Stonean residuated lattices, MTL-algebras and involution residuated lattices. We investigate specific properties of ideals in De Morgan residuated lattices, we state the prime ideal theorem and the pseudo-complementedness of the ideal...
The notion of idempotent modification of an algebra was introduced by Ježek. He proved that the idempotent modification of a group is subdirectly irreducible. For an -algebra we denote by and the idempotent modification, the underlying set or the underlying lattice of , respectively. In the present paper we prove that if is semisimple and is a chain, then is subdirectly irreducible. We deal also with a question of Ježek concerning varieties of algebras.
The notion of a joint distribution in -finite measures of observables of a quantum logic defined on some system of -independent Boolean sub--algebras of a Boolean -algebra is studied. In the present first part of the paper the author studies a joint distribution of compatible observables. It is shown that it may exists, although a joint obsevable of compatible observables need not exist.
This paper i a continuation of the first part under the same title. The author studies a joint distribution in -finite measures for noncompatible observables of a quantum logic defined on some system of -independent Boolean sub--algebras of a Boolean -algebra. We present some necessary and sufficient conditions fot the existence of a joint distribution. In particular, it is shown that an arbitrary system of obsevables has a joint distribution in a measure iff it may be embedded into a system...
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new structures.
n×m-valued Łukasiewicz algebras with negation were introduced and investigated in [20, 22, 23]. These algebras constitute a non trivial generalization of n-valued Łukasiewicz-Moisil algebras and in what follows, we shall call them n×m-valued Łukasiewicz-Moisil algebras (or LM n×m -algebras). In this paper, the study of this new class of algebras is continued. More precisely, a topological duality for these algebras is described and a characterization of LM n×m -congruences in terms of special subsets...