Combinatorial stacks and the four-color theorem
In a highly influential paper, Bidigare, Hanlon and Rockmore showed that a number of popular Markov chains are random walks on the faces of a hyperplane arrangement. Their analysis of these Markov chains took advantage of the monoid structure on the set of faces. This theory was later extended by Brown to a larger class of monoids called left regular bands. In both cases, the representation theory of these monoids played a prominent role. In particular, it was used to compute the spectrum of the...
Let be the set of subsets of of cardinality . Let be a coloring of and a coloring of . We write if every -homogeneous is also -homogeneous. The least such that for some is called the -width of and denoted by . In the first part of the paper we prove the existence of colorings with high -width. In particular, we show that for each and there is a coloring with . In the second part of the paper we give applications of wide colorings in the theory of generalized quantifiers....
We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.
We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a -space. In [9] we showed that has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. has countable fan tightness and the Reznichenko property. 2....