Displaying 21 – 40 of 8546

Showing per page

2-distance 4-colorability of planar subcubic graphs with girth at least 22

Oleg V. Borodin, Anna O. Ivanova (2012)

Discussiones Mathematicae Graph Theory

The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.

2-factors in claw-free graphs

Guantao Chen, Jill R. Faudree, Ronald J. Gould, Akira Saito (2000)

Discussiones Mathematicae Graph Theory

We consider the question of the range of the number of cycles possible in a 2-factor of a 2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced K 1 , 3 .) In particular, we show that for such a graph G of order n ≥ 51 with δ(G) ≥ (n-2)/3, G contains a 2-factor with exactly k cycles, for 1 ≤ k ≤ (n-24)/3. We also show that this result is sharp in the sense that if we lower δ(G), we cannot obtain the full range of values for k.

2-factors in claw-free graphs with locally disconnected vertices

Mingqiang An, Liming Xiong, Runli Tian (2015)

Czechoslovak Mathematical Journal

An edge of G is singular if it does not lie on any triangle of G ; otherwise, it is non-singular. A vertex u of a graph G is called locally connected if the induced subgraph G [ N ( u ) ] by its neighborhood is connected; otherwise, it is called locally disconnected. In this paper, we prove that if a connected claw-free graph G of order at least three satisfies the following two conditions: (i) for each locally disconnected vertex v of degree at least 3 in G , there is a nonnegative integer s such that v lies...

2-halvable complete 4-partite graphs

Dalibor Fronček (1998)

Discussiones Mathematicae Graph Theory

A complete 4-partite graph K m , m , m , m is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs K m , m , m , m with at most one odd part all d-halvable graphs are known. In the class of biregular graphs K m , m , m , m with four odd parts (i.e., the graphs K m , m , m , n and K m , m , n , n ) all d-halvable graphs are known as well, except for the graphs K m , m , n , n when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs K m , m , m , m with three or four different...

2-placement of (p,q)-trees

Beata Orchel (2003)

Discussiones Mathematicae Graph Theory

Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1. Let G = (L,R;E) and H = (L',R';E') be two (p,q)-tree. A bijection f:L ∪ R → L' ∪ R' is said to be a biplacement of G and H if f(L) = L' and f(x)f(y) ∉ E' for every edge xy of G. A biplacement of G and its copy is called 2-placement of G. A bipartite graph G is 2-placeable if G has a 2-placement. In this paper we give all (p,q)-trees which...

2-Tone Colorings in Graph Products

Jennifer Loe, Danielle Middelbrooks, Ashley Morris, Kirsti Wash (2015)

Discussiones Mathematicae Graph Theory

A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic number...

3-consecutive c-colorings of graphs

Csilla Bujtás, E. Sampathkumar, Zsolt Tuza, M.S. Subramanya, Charles Dominic (2010)

Discussiones Mathematicae Graph Theory

A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number ( χ ̅ ) 3 C C ( G ) of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with ( χ ̅ ) 3 C C ( G ) k for k = 3 and k = 4.

3-Paths in Graphs with Bounded Average Degree

Stanislav Jendrol′, Mária Maceková, Mickaël Montassier, Roman Soták (2016)

Discussiones Mathematicae Graph Theory

In this paper we study the existence of unavoidable paths on three vertices in sparse graphs. A path uvw on three vertices u, v, and w is of type (i, j, k) if the degree of u (respectively v, w) is at most i (respectively j, k). We prove that every graph with minimum degree at least 2 and average degree strictly less than m contains a path of one of the types [...] Moreover, no parameter of this description can be improved.

Currently displaying 21 – 40 of 8546