Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles
Let be a simple graph and denote the set of edges incident with a vertex . A neighbor sum distinguishing (NSD) total coloring of is a proper total coloring of such that for each edge . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree admits an NSD total -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with but without -cycles by applying the Combinatorial Nullstellensatz.