A new method to construct lower bounds for van der Waerden numbers.
We give a new and elementary proof of Jackson’s terminating -analogue of Dixon’s identity by using recurrences and induction.
We prove a theorem guaranteeing special paths of faces in 2-connected plane graphs. As a corollary, we obtain a new proof of Thomassen’s theorem that every 4-connected planar graph is Hamiltonian-connected.
Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced .