Sur une construction de Gilbert de B. Robinson
The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.
In this paper, we propose a method which enables to construct almost optimal broadcast schemes on an -dimensional hypercube in the circuit switched, -port model. In this model, an initiator must inform all the nodes of the network in a sequence of rounds. During a round, vertices communicate along arc-disjoint dipaths. Our construction is based on particular sequences of nested binary codes having the property that each code can inform the next one in a single round. This last property is insured...
We construct new symmetric Hadamard matrices of orders 92, 116, and 172. While the existence of those of order 92 was known since 1978, the orders 116 and 172 are new. Our construction is based on a recent new combinatorial array (GP array) discovered by N. A. Balonin and J. Seberry. For order 116 we used an adaptation of an algorithm for parallel collision search. The adaptation pertains to the modification of some aspects of the algorithm to make it suitable to solve a 3-way matching problem....
Let n ≥ 3 and ⋋ ≥ 1 be integers. Let ⋋Kn denote the complete multigraph with edge-multiplicity ⋋. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m for all even ⋋ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m − F for all odd ⋋ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of...