Displaying 861 – 880 of 8549

Showing per page

Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle

Laura Frigerio, Federico Lastaria, Norma Zagaglia Salvi (2011)

Discussiones Mathematicae Graph Theory

In this paper we investigate the minimum number of colors required for a proper edge coloring of a finite, undirected, regular graph G in which no two adjacent vertices are incident to edges colored with the same set of colors. In particular, we study this parameter in relation to the direct product of G by a path or a cycle.

Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six

Yuehua Bu, Ko-Wei Lih, Weifan Wang (2011)

Discussiones Mathematicae Graph Theory

An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge-coloring o G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ'ₐ(G). We prove that χ'ₐ(G) is at most the maximum degree plus 2 if G is a planar graph without isolated edges whose girth is at least 6. This gives new evidence to a conjecture proposed in [Z. Zhang, L. Liu, and J. Wang,...

Algebraic approach to locally finite trees with one end

Bohdan Zelinka (2003)

Mathematica Bohemica

Let T be an infinite locally finite tree. We say that T has exactly one end, if in T any two one-way infinite paths have a common rest (infinite subpath). The paper describes the structure of such trees and tries to formalize it by algebraic means, namely by means of acyclic monounary algebras or tree semilattices. In these algebraic structures the homomorpisms and direct products are considered and investigated with the aim of showing, whether they give algebras with the required properties. At...

Currently displaying 861 – 880 of 8549