Displaying 181 – 200 of 273

Showing per page

On the f - and h -triangle of the barycentric subdivision of a simplicial complex

Sarfraz Ahmad (2013)

Czechoslovak Mathematical Journal

For a simplicial complex Δ we study the behavior of its f - and h -triangle under the action of barycentric subdivision. In particular we describe the f - and h -triangle of its barycentric subdivision sd ( Δ ) . The same has been done for f - and h -vector of sd ( Δ ) by F. Brenti, V. Welker (2008). As a consequence we show that if the entries of the h -triangle of Δ are nonnegative, then the entries of the h -triangle of sd ( Δ ) are also nonnegative. We conclude with a few properties of the h -triangle of sd ( Δ ) .

On the Horton-Strahler Number for Combinatorial Tries

Markus E. Nebel (2010)

RAIRO - Theoretical Informatics and Applications

In this paper we investigate the average Horton-Strahler number of all possible tree-structures of binary tries. For that purpose we consider a generalization of extended binary trees where leaves are distinguished in order to represent the location of keys within a corresponding trie. Assuming a uniform distribution for those trees we prove that the expected Horton-Strahler number of a tree with α internal nodes and β leaves that correspond to a key is asymptotically given by 4 2 β - α log ( α ) ( 2 β - 1 ) ( α + 1 ) ( α + 2 ) 2 α + 1 α - 1 8 π α 3 / 2 log ( 2 ) ( β - 1 ) β 2 β β 2 provided that α...

On the k-gamma q-distribution

Rafael Díaz, Camilo Ortiz, Eddy Pariguan (2010)

Open Mathematics

We provide combinatorial as well as probabilistic interpretations for the q-analogue of the Pochhammer k-symbol introduced by Díaz and Teruel. We introduce q-analogues of the Mellin transform in order to study the q-analogue of the k-gamma distribution.

Currently displaying 181 – 200 of 273