An algebraic summation over the set of partitions and some strange evaluations
Chu Wenchang (1995)
Rendiconti del Seminario Matematico della Università di Padova
Herbert S. Wilf, Doron Zeilberger (1992)
Inventiones mathematicae
Hoffman, Michael E. (2001)
The Electronic Journal of Combinatorics [electronic only]
Coleman, Micah (2004)
The Electronic Journal of Combinatorics [electronic only]
Antonín Vrba (1973)
Časopis pro pěstování matematiky
Xiao Jun Wu, Chong-Yun Chao (2005)
Czechoslovak Mathematical Journal
Let be a non-empty subset of positive integers. A partition of a positive integer into is a finite nondecreasing sequence of positive integers in with repetitions allowed such that . Here we apply Pólya’s enumeration theorem to find the number of partitions of into , and the number of distinct partitions of into . We also present recursive formulas for computing and .
Zvi Arad, Gideon Ehrlich, Otto H. Kegel, John C. Lennox (1990)
Rendiconti del Seminario Matematico della Università di Padova
Song Guo (2011)
Acta Arithmetica
Bandlow, Jason, Killpatrick, Kendra (2001)
The Electronic Journal of Combinatorics [electronic only]
Clark, Lane (2004)
Journal of Integer Sequences [electronic only]
Clark, Lane (2000)
The Electronic Journal of Combinatorics [electronic only]
Z. Star (1975)
Aequationes mathematicae
Z. Star (1975)
Aequationes mathematicae
Petar Marković (2007)
Publications de l'Institut Mathématique
Romeo Meštrović (2012)
Archivum Mathematicum
Let be a prime, and let be the Fermat quotient of to base . The following curious congruence was conjectured by L. Skula and proved by A. Granville In this note we establish the above congruence by entirely elementary number theory arguments.
Morton Abramson (1969)
Elemente der Mathematik
Jozef Širáň (1983)
Mathematica Slovaca
Žana Kovijanić Vukićević (2007)
Publications de l'Institut Mathématique
Schlage-Puchta, Jan-Christoph (2005)
Journal of Integer Sequences [electronic only]
Skandera, Mark (2001)
Séminaire Lotharingien de Combinatoire [electronic only]