Displaying 241 – 260 of 341

Showing per page

An elementary proof of a congruence by Skula and Granville

Romeo Meštrović (2012)

Archivum Mathematicum

Let p 5 be a prime, and let q p ( 2 ) : = ( 2 p - 1 - 1 ) / p be the Fermat quotient of p to base 2 . The following curious congruence was conjectured by L. Skula and proved by A. Granville q p ( 2 ) 2 - k = 1 p - 1 2 k k 2 ( mod p ) . In this note we establish the above congruence by entirely elementary number theory arguments.

Currently displaying 241 – 260 of 341