Displaying 61 – 80 of 341

Showing per page

A density version of the Carlson–Simpson theorem

Pandelis Dodos, Vassilis Kanellopoulos, Konstantinos Tyros (2014)

Journal of the European Mathematical Society

We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer k 2 and every set A of words over k satisfying lim sup n | A [ k ] n | / k n > 0 there exist a word c over k and a sequence ( w n ) of left variable words over k such that the set c { c w 0 ( a 0 ) . . . w n ( a n ) : n and a 0 , . . . , a n [ k ] } is contained in A . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.

Currently displaying 61 – 80 of 341