Displaying 61 – 80 of 273

Showing per page

On automatic infinite permutations∗

Anna Frid, Luca Zamboni (2012)

RAIRO - Theoretical Informatics and Applications

An infinite permutation α is a linear ordering of N. We study properties of infinite permutations analogous to those of infinite words, and show some resemblances and some differences between permutations and words. In this paper, we try to extend to permutations the notion of automaticity. As we shall show, the standard definitions which are equivalent in the case of words are not equivalent in the context of permutations. We investigate the relationships...

On averages of randomized class functions on the symmetric groups and their asymptotics

Paul-Olivier Dehaye, Dirk Zeindler (2013)

Annales de l’institut Fourier

The second author had previously obtained explicit generating functions for moments of characteristic polynomials of permutation matrices ( n points). In this paper, we generalize many aspects of this situation. We introduce random shifts of the eigenvalues of the permutation matrices, in two different ways: independently or not for each subset of eigenvalues associated to the same cycle. We also consider vastly more general functions than the characteristic polynomial of a permutation matrix, by...

On binary trees and Dyck paths

A. Panayotopoulos, A. Sapounakis (1995)

Mathématiques et Sciences Humaines

A bijection between the set of binary trees with n vertices and the set of Dyck paths of length 2n is obtained. Two constructions are given which enable to pass from a Dyck path to a binary tree and from a binary tree to a Dyck path.

On binary trees and permutations

A. Panayotopoulos, A. Sapounakis (1992)

Mathématiques et Sciences Humaines

Every binary tree is associated to a permutation with repetitions, which determines it uniquely. Two operations are introduced and used for the construction of the set of all binary trees. The set of all permutations which correspond to a given binary tree is determined and its cardinal number is evaluated.

On certain generalized q-Appell polynomial expansions

Thomas Ernst (2015)

Annales UMCS, Mathematica

We study q-analogues of three Appell polynomials, the H-polynomials, the Apostol-Bernoulli and Apostol-Euler polynomials, whereby two new q-difference operators and the NOVA q-addition play key roles. The definitions of the new polynomials are by the generating function; like in our book, two forms, NWA and JHC are always given together with tables, symmetry relations and recurrence formulas. It is shown that the complementary argument theorems can be extended to the new polynomials as well as to...

On colored set partitions of type B n

David Wang (2014)

Open Mathematics

Generalizing Reiner’s notion of set partitions of type B n, we define colored B n-partitions by coloring the elements in and not in the zero-block respectively. Considering the generating function of colored B n-partitions, we get the exact formulas for the expectation and variance of the number of non-zero-blocks in a random colored B n-partition. We find an asymptotic expression of the total number of colored B n-partitions up to an error of O(n −1/2log7/2 n], and prove that the centralized and...

Currently displaying 61 – 80 of 273