Displaying 1081 – 1100 of 2016

Showing per page

Od unimodálních posloupností k narozeninovému paradoxu

Antonín Slavík (2016)

Pokroky matematiky, fyziky a astronomie

Konečná posloupnost reálných čísel se nazývá unimodální, pokud ji lze rozdělit na neklesající a nerostoucí úsek. V textu se zaměříme především na kombinatorické posloupnosti tvořené kombinačními čísly nebo Stirlingovými čísly prvního a druhého druhu. Kromě unimodality se budeme věnovat též příbuznému pojmu logaritmické konkávnosti. Ukážeme, jak tato témata souvisejí s klasickými Newtonovými a Maclaurinovými nerovnostmi, které v závěru využijeme k řešení obecné verze narozeninového paradoxu.

Odd cutsets and the hard-core model on d

Ron Peled, Wojciech Samotij (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider the hard-core lattice gas model on d and investigate its phase structure in high dimensions. We prove that when the intensity parameter exceeds C d - 1 / 3 ( log d ) 2 , the model exhibits multiple hard-core measures, thus improving the previous bound of C d - 1 / 4 ( log d ) 3 / 4 given by Galvin and Kahn. At the heart of our approach lies the study of a certain class of edge cutsets in d , the so-called odd cutsets, that appear naturally as the boundary between different phases in the hard-core model. We provide a refined combinatorial...

On a conjecture of Sárközy and Szemerédi

Yong-Gao Chen (2015)

Acta Arithmetica

Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...

Currently displaying 1081 – 1100 of 2016