On a family of generalized Pascal triangles defined by exponential Riordan arrays.
Some aspects of duality triads introduced recently are discussed. In particular, the general solution for the triad polynomials is given. Furthermore, a generalization of the notion of duality triad is proposed and some simple properties of these generalized duality triads are derived.
Pólya’s fundamental enumeration theorem and some results from Williamson’s generalized setup of it are proved in terms of Schur- Macdonald’s theory (S-MT) of “invariant matrices”. Given a permutation group W ≤ Sd and a one-dimensional character χ of W , the polynomial functor Fχ corresponding via S-MT to the induced monomial representation Uχ = ind|Sdv/W (χ) of Sd , is studied. It turns out that the characteristic ch(Fχ ) is the weighted inventory of some set J(χ) of W -orbits in the integer-valued hypercube...