Page 1 Next

Displaying 1 – 20 of 47

Showing per page

Edon- ( 256 , 384 , 512 ) – an efficient implementation of Edon- family of cryptographic hash functions

Danilo Gligoroski, Svein Johan Knapskog (2008)

Commentationes Mathematicae Universitatis Carolinae

We have designed three fast implementations of a recently proposed family of hash functions Edon– . They produce message digests of length n = 256 , 384 , 512 bits and project security of 2 n 2 hash computations for finding collisions and 2 n hash computations for finding preimages and second preimages. The design is not the classical Merkle-Damgård but can be seen as wide-pipe iterated compression function. Moreover the design is based on using huge quasigroups of orders 2 256 , 2 384 and 2 512 that are constructed by using only bitwise...

El diámetro de ciertos digrafos circulantes de triple paso.

Paz Morillo Bosch, Miguel Angel Fiol Mora (1986)

Stochastica

This paper studies some diameter-related properties of the 3-step circulant digraphs with set of vertices V≡ZN and steps (± a,b). More precisely, it concentrates upon maximizing their order N for any fixed value of their diameter k. In the proposed geometrical approach, each digraph is fully represented by a T-shape tile which tessellates periodically the plane. The study of these tiles leads to the optimal solutions.

Embedding 3 -homogeneous latin trades into abelian 2 -groups

Nicholas J. Cavenagh (2004)

Commentationes Mathematicae Universitatis Carolinae

Let T be a partial latin square and L be a latin square with T L . We say that T is a latin trade if there exists a partial latin square T ' with T ' T = such that ( L T ) T ' is a latin square. A k -homogeneous latin trade is one which intersects each row, each column and each entry either 0 or k times. In this paper, we show the existence of 3 -homogeneous latin trades in abelian 2 -groups.

Embedding properties of endomorphism semigroups

João Araújo, Friedrich Wehrung (2009)

Fundamenta Mathematicae

Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. We prove various results that imply the following: (1) If card Ω ≥ 2, then Self Ω has a semigroup embedding into the dual of Self Γ iff c a r d Γ 2 c a r d Ω . In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω. (2) If V is infinite-dimensional, then...

Currently displaying 1 – 20 of 47

Page 1 Next