Satisfying states of triangulations of a convex -gon.
Certain numerical invariants of directed graphs, analogous to the domatic number and to the total domatic number of an undirected graph, are introduced and studied.
For a nontrivial connected graph , let be a vertex coloring of where adjacent vertices may be colored the same. For a vertex , the neighborhood color set is the set of colors of the neighbors of . The coloring is called a set coloring if for every pair of adjacent vertices of . The minimum number of colors required of such a coloring is called the set chromatic number . We show that the decision variant of determining is NP-complete in the general case, and show that can be...
A generalized-theta-graph is a graph consisting of a pair of end vertices joined by k (k ≥ 3) internally disjoint paths. We denote the family of all the n-vertex generalized-theta-graphs with k paths between end vertices by Θⁿₖ. In this paper, we determine the sharp lower bound and the sharp upper bound for the total number of matchings of generalized-theta-graphs in Θⁿₖ. In addition, we characterize the graphs in this class of graphs with respect to the mentioned bounds.
An infinite family of T-factorizations of complete graphs , where 2n = 56k and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.
In this paper, we survey some new results in four areas of domination in graphs, namely: (1) the toughness and matching structure of graphs having domination number 3 and which are "critical" in the sense that if one adds any missing edge, the domination number falls to 2; (2) the matching structure of graphs having domination number 3 and which are "critical" in the sense that if one deletes any vertex, the domination number falls to 2; (3) upper bounds...
We show that every 3-regular circle graph has at least two pairs of twin vertices; consequently no such graph is prime with respect to the split decomposition. We also deduce that up to isomorphism, K4 and K3,3 are the only 3-connected, 3-regular circle graphs.
Let be a multigraph. The star number of is the minimum number of stars needed to decompose the edges of . The star arboricity of is the minimum number of star forests needed to decompose the edges of . As usual denote the -fold complete graph on vertices (i.e., the multigraph on vertices such that there are edges between every pair of vertices). In this paper, we prove that for
A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S f(x) for all...