Harmonic functions on multiplicative graphs and interpolation polynomials.
Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite-dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons. In this paper, we demonstrate a connection...
It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
We construct irreducible graded representations of simply laced Khovanov–Lauda algebras which are concentrated in one degree. The underlying combinatorics of skew shapes and standard tableaux corresponding to arbitrary simply laced types has been developed previously by Peterson, Proctor and Stembridge. In particular, the Peterson–Proctor hook formula gives the dimensions of the homogeneous irreducible modules corresponding to straight shapes.
We introduce a graded Hopf algebra based on the set of parking functions (hence of dimension in degree n). This algebra can be embedded into a noncommutative polynomial algebra in infinitely many variables. We determine its structure, and show that it admits natural quotients and subalgebras whose graded components have dimensions respectively given by the Schröder numbers (plane trees), the Catalan numbers, and powers of 3. These smaller algebras are always bialgebras and belong to some family...
When two Markov operators commute, it suggests that we can couple two copies of one of the corresponding processes. We explicitly construct a number of couplings of this type for a commuting family of Markov processes on the set of conjugacy classes of the unitary group, using a dynamical rule inspired by the RSK algorithm. Our motivation for doing this is to develop a parallel programme, on the circle, to some recently discovered connections in random matrix theory between reflected and conditioned...
A fairly old problem in modular representation theory is to determine the vanishing behavior of the groups and higher groups of Weyl modules and to compute the dimension of the -vector space for any partitions , of , which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups and provide a new formula for the intertwining number for any...