Displaying 381 – 400 of 595

Showing per page

Orbit measures, random matrix theory and interlaced determinantal processes

Manon Defosseux (2010)

Annales de l'I.H.P. Probabilités et statistiques

A connection between representation of compact groups and some invariant ensembles of hermitian matrices is described. We focus on two types of invariant ensembles which extend the gaussian and the Laguerre Unitary ensembles. We study them using projections and convolutions of invariant probability measures on adjoint orbits of a compact Lie group. These measures are described by semiclassical approximation involving tensor and restriction multiplicities. We show that a large class of them are determinantal....

Order complex of ideals in a commutative ring with identity

Nela Milošević, Zoran Z. Petrović (2015)

Czechoslovak Mathematical Journal

Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when...

Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants

Constantin Teleman, Christopher Woodward (2003)

Annales de l’institut Fourier

The set of conjugacy classes appearing in a product of conjugacy classes in a compact, 1 -connected Lie group K can be identified with a convex polytope in the Weyl alcove. In this paper we identify linear inequalities defining this polytope. Each inequality corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety G / P , where G is the complexification of K and P is a maximal parabolic subgroup. This generalizes the results for S U ( n ) of Agnihotri and the second author and Belkale on...

Pebblings.

Eriksson, Henrik (1995)

The Electronic Journal of Combinatorics [electronic only]

Pieri's formula for flag manifolds and Schubert polynomials

Frank Sottile (1996)

Annales de l'institut Fourier

We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri’s formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain...

Currently displaying 381 – 400 of 595