Displaying 161 – 180 of 595

Showing per page

Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs

Sebastian M. Cioabă, Xiaofeng Gu (2016)

Czechoslovak Mathematical Journal

The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.

Construction of Mendelsohn designs by using quasigroups of ( 2 , q ) -varieties

Lidija Goračinova-Ilieva, Smile Markovski (2016)

Commentationes Mathematicae Universitatis Carolinae

Let q be a positive integer. An algebra is said to have the property ( 2 , q ) if all of its subalgebras generated by two distinct elements have exactly q elements. A variety 𝒱 of algebras is a variety with the property ( 2 , q ) if every member of 𝒱 has the property ( 2 , q ) . Such varieties exist only in the case of q prime power. By taking the universes of the subalgebras of any finite algebra of a variety with the property ( 2 , q ) , 2 < q , blocks of Steiner system of type ( 2 , q ) are obtained. The stated correspondence between Steiner...

Coxeter polynomials of Salem trees

Charalampos A. Evripidou (2015)

Colloquium Mathematicae

We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove that if z is a root of multiplicities m , . . . , m k for the Coxeter polynomials of the trees , . . . , k respectively, then z is a root for the Coxeter polynomial of their join, of multiplicity at least m i n m - m , . . . , m - m k where m = m + + m k .

Coxeter-like complexes.

Babson, Eric, Reiner, Victor (2004)

Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]

Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras

Peng Shan (2011)

Annales scientifiques de l'École Normale Supérieure

We define the i -restriction and i -induction functors on the category 𝒪 of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.

Determinantal transition kernels for some interacting particles on the line

A. B. Dieker, J. Warren (2008)

Annales de l'I.H.P. Probabilités et statistiques

We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.

Currently displaying 161 – 180 of 595