The structure of a complete -group
In this paper we study some special residuated lattices, namely, idempotent residuated chains. After giving some properties of Green’s relation on the monoid reduct of an idempotent residuated chain, we establish a structure theorem for idempotent residuated chains. As an application, we give necessary and sufficient conditions for a band with an identity to be the monoid reduct of some idempotent residuated chain. Finally, based on the structure theorem for idempotent residuated chains, we obtain...
We give some necessary and sufficient conditions for transitive -permutation groups to be -transitive. We also discuss primitive components and give necessary and sufficient conditions for transitive -permutation groups to be normal-valued.
The L-Fuzzy concept theory that we have developed sets up classifications from the objects and attributes of a context through L-Fuzzy relations. This theory generalizes the formal concept theory of R. Wille. In this paper we begin with the L-Fuzzy concept definition that generalizes the definitions of the formal concept theory, and we study the lattice structure of the L-Fuzzy concept set, giving a constructive method for calculating this lattice. At the end, we apply this constructive method to...
The aim of this paper is to characterize pairs (L, A), where L is a finite lattice and A a finite algebra, such that the subalgebra lattice of A is isomorphic to L. Next, necessary and sufficient conditions are found for pairs of finite algebras (of possibly distinct types) to have isomorphic subalgebra lattices. Both of these characterizations are particularly simple in the case of distributive subalgebra lattices. We do not restrict our attention to total algebras only, but we consider the more...
Let and be two Archimedean vector lattices and let and be their order continuous order biduals. If is a positive orthosymmetric bimorphism, then the triadjoint of is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost -algebras.