DRl-semigroups and -algebras
In this note we classify the bounded hyper K-algebras of order 3, which have D1 = {1}, D2 = {1,2} and D3 = {0,1} as a dual commutative hyper K-ideal of type 1. In this regard we show that there are such non-isomorphic bounded hyper K-algebras.
We modify slightly the definition of -partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of -space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms.
In this note we describe the structure of dually residuated -monoids (-monoids) that have no non-trivial convex subalgebras.
A method is developed for proving non-amenability of certain automorphism groups of countable structures and is used to show that the automorphism groups of the random poset and random distributive lattice are not amenable. The universal minimal flow of the automorphism group of the random distributive lattice is computed as a canonical space of linear orderings but it is also shown that the class of finite distributive lattices does not admit hereditary order expansions with the Amalgamation Property....