Displaying 661 – 680 of 995

Showing per page

Properties of relatively pseudocomplemented directoids

Ivan Chajda, Miroslav Kolařík, Filip Švrček (2011)

Mathematica Bohemica

The concept of a relatively pseudocomplemented directoid was introduced recently by the first author. It was shown that the class of relatively pseudocomplemented directoids forms a variety whose axiom system contains seven identities. The aim of this paper is three-fold. First we show that these identities are not independent and their independent subset is presented. Second, we modify the adjointness property known for relatively pseudocomplemented semilattices in the way which is suitable for...

P-sets and minimal right ideals in ℕ*

W. R. Brian (2015)

Fundamenta Mathematicae

Recall that a P-set is a closed set X such that the intersection of countably many neighborhoods of X is again a neighborhood of X. We show that if 𝔱 = 𝔠 then there is a minimal right ideal of (βℕ,+) that is also a P-set. We also show that the existence of such P-sets implies the existence of P-points; in particular, it is consistent with ZFC that no minimal right ideal is a P-set. As an application of these results, we prove that it is both consistent with and independent of ZFC that the shift...

Pseudocomplemented and Stone Posets

Ivan Chajda (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We show that every pseudocomplemented poset can be equivalently expressed as a certain algebra where the operation of pseudocomplementation can be characterized by means of remaining two operations which are binary and nullary. Similar characterization is presented for Stone posets.

Pseudocomplemented directoids

Ivan Chajda (2008)

Commentationes Mathematicae Universitatis Carolinae

Directoids as a generalization of semilattices were introduced by J. Ježek and R. Quackenbush in 1990. We modify the concept of a pseudocomplement for commutative directoids and study several basic properties: the Glivenko equivalence, the set of the so-called boolean elements and an axiomatization of these algebras.

Pseudocomplemented ordered sets

Radomír Halaš (1993)

Archivum Mathematicum

The aim of this paper is to transfer the concept of pseudocomplement from lattices to ordered sets and to prove some basic results holding for pseudocomplemented ordered sets.

Quasi-implication algebras

Ivan Chajda, Kamil Dušek (2002)

Discussiones Mathematicae - General Algebra and Applications

A quasi-implication algebra is introduced as an algebraic counterpart of an implication reduct of propositional logic having non-involutory negation (e.g. intuitionistic logic). We show that every pseudocomplemented semilattice induces a quasi-implication algebra (but not conversely). On the other hand, a more general algebra, a so-called pseudocomplemented q-semilattice is introduced and a mutual correspondence between this algebra and a quasi-implication algebra is shown.

Quasitrivial semimodules. VI.

Tomáš Kepka, Petr Němec (2013)

Acta Universitatis Carolinae. Mathematica et Physica

The paper continues the investigation of quasitrivial semimodules and related problems. In particular, endomorphisms of semilattices are investigated.

Currently displaying 661 – 680 of 995