Ramified Sets Of Pseudotrees
Page 1 Next
Đuro Kurepa (1977)
Publications de l'Institut Mathématique
D. Kurepa (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Gavalec, Martin, Vojtáš, Peter (1980)
Abstracta. 8th Winter School on Abstract Analysis
Jaroslav Ježek, Václav Slavík (2000)
Mathematica Bohemica
Algorithms for generating random posets, random lattices and random lattice terms are given.
Ewa Rydzyńska (1990)
Kim, Jin Bai, Kymn, Kern O. (1988)
International Journal of Mathematics and Mathematical Sciences
Kitaev, Sergey, Liese, Jeffrey, Remmel, Jeffrey, Sagan, Bruce E. (2009)
The Electronic Journal of Combinatorics [electronic only]
Ossona de Mendez, Patrice (2002)
Journal of Graph Algorithms and Applications
H. MITSCH (1974)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Jiří Rachůnek (1981)
Czechoslovak Mathematical Journal
C. Chameni-Nembua (1989)
Mathématiques et Sciences Humaines
Jan Paseka (1986)
Archivum Mathematicum
M. Skorsky (1989)
Semigroup forum
Růžena Blažková, Jan Chvalina (1984)
Archivum Mathematicum
J. Varlet (1982)
Banach Center Publications
Solomon Leader, L. Finkelstein (1971)
Fundamenta Mathematicae
Vítězslav Novák, Miroslav Novotný (1997)
Czechoslovak Mathematical Journal
J. Riguet (1948)
Bulletin de la Société Mathématique de France
Sergio A. Celani (2015)
Open Mathematics
In this paper we shall study a notion of relative annihilator-preserving congruence relation and relative annihilator-preserving homomorphism in the class of bounded distributive semilattices. We shall give a topological characterization of this class of semilattice homomorphisms. We shall prove that the semilattice congruences that are associated with filters are exactly the relative annihilator-preserving congruence relations.
Radomír Halaš (2000)
Czechoslovak Mathematical Journal
In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of -polars are studied. Connections between -polars and prime ideals, especially in distributive sets, are found.
Page 1 Next