Page 1

Displaying 1 – 18 of 18

Showing per page

Un algorithme de partition d'un produit direct d'ordres totaux en un nombre minimum de chaînes

Emmanuel Pichon, Philippe Lenca, Fabrice Guillet, Jian Wei Wang (1994)

Mathématiques et Sciences Humaines

Cette étude s'inscrit dans un prolongement algorithmique d'un travail de Bruno Leclerc, publié dans cette revue, qui discute de la taille maximum d'une antichaîne dans un produit direct P d'ordres totaux. On y présente un algorithme de partitionnement de P en un nombre minimum de chaînes. Enfin, on décrit brièvement une application à l'extraction de connaissance.

Une opérade anticyclique sur les arbustes

Frédéric Chapoton (2010)

Annales mathématiques Blaise Pascal

We define new combinatorial objects, called shrubs, such that forests of rooted trees are shrubs. We then introduce a structure of operad on shrubs. We show that this operad is contained in the Zinbiel operad, by using the inclusion of Zinbiel in the operad of moulds. We also prove that this inclusion is compatible with the richer structure of anticyclic operad that exists on Zinbiel and on moulds.

Universality of separoids

Jaroslav Nešetřil, Ricardo Strausz (2006)

Archivum Mathematicum

A separoid is a symmetric relation 2 S 2 defined on disjoint pairs of subsets of a given set S such that it is closed as a filter in the canonical partial order induced by the inclusion (i.e., A B A ' B ' A A ' and B B ' ). We introduce the notion of homomorphism as a map which preserve the so-called “minimal Radon partitions” and show that separoids, endowed with these maps, admits an embedding from the category of all finite graphs. This proves that separoids constitute a countable universal partial order. Furthermore,...

Upper and Lower Bounds in Relator Spaces

Száz, Árpád (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 06A06, 54E15An ordered pair X(R) = ( X, R ) consisting of a nonvoid set X and a nonvoid family R of binary relations on X is called a relator space. Relator spaces are straightforward generalizations not only of uniform spaces, but also of ordered sets. Therefore, in a relator space we can naturally define not only some topological notions, but also some order theoretic ones. It turns out that these two, apparently quite different, types of notions are closely...

Currently displaying 1 – 18 of 18

Page 1