Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Ideals, congruences and annihilators on nearlattices

Ivan Chajda, Miroslav Kolařík (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or 0 -distributivity of nearlattices by means of certain properties of annihilators.

Ideals in distributive posets

Cyndyma Batueva, Marina Semenova (2011)

Open Mathematics

We prove that any ideal in a distributive (relative to a certain completion) poset is an intersection of prime ideals. Besides that, we give a characterization of n-normal meet semilattices with zero, thus generalizing a known result for lattices with zero.

Incomparably continuable sets of semilattices

Jaroslav Ježek, Václav Slavík (2000)

Mathematica Bohemica

A finite set of finite semilattices is said to be incomparably continuable if it can be extended to an infinite set of pairwise incomparable (with respect to embeddability) finite semilattices. After giving some simple examples we show that the set consisting of the four-element Boolean algebra and the four-element fork is incomparably continuable.

Independent axiom systems for nearlattices

João Araújo, Michael Kinyon (2011)

Czechoslovak Mathematical Journal

A nearlattice is a join semilattice such that every principal filter is a lattice with respect to the induced order. Hickman and later Chajda et al independently showed that nearlattices can be treated as varieties of algebras with a ternary operation satisfying certain axioms. Our main result is that the variety of nearlattices is 2 -based, and we exhibit an explicit system of two independent identities. We also show that the original axiom systems of Hickman as well as that of Chajda et al are...

Induced pseudoorders

Ivan Chajda, Miroslav Haviar (1991)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Infinite paths and cliques in random graphs

Alessandro Berarducci, Pietro Majer, Matteo Novaga (2012)

Fundamenta Mathematicae

We study the thresholds for the emergence of various properties in random subgraphs of (ℕ, <). In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.

Interior and closure operators on bounded commutative residuated l-monoids

Jiří Rachůnek, Filip Švrček (2008)

Discussiones Mathematicae - General Algebra and Applications

Topological Boolean algebras are generalizations of topological spaces defined by means of topological closure and interior operators, respectively. The authors in [14] generalized topological Boolean algebras to closure and interior operators of MV-algebras which are an algebraic counterpart of the Łukasiewicz infinite valued logic. In the paper, these kinds of operators are extended (and investigated) to the wide class of bounded commutative Rl-monoids that contains e.g. the classes of BL-algebras...

Interior and closure operators on bounded residuated lattices

Jiří Rachůnek, Zdeněk Svoboda (2014)

Open Mathematics

Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate multiplicative interior and additive closure operators (mi- and ac-operators) generalizing topological interior and closure operators on such algebras. We describe connections between mi- and ac-operators, and for residuated lattices with Glivenko property we give connections between operators on them and on the residuated...

Interior and Closure Operators on Commutative Bounded Residuated Lattices

Jiří Rachůnek, Zdeněk Svoboda (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.

Invariance groups of finite functions and orbit equivalence of permutation groups

Eszter K. Horváth, Géza Makay, Reinhard Pöschel, Tamás Waldhauser (2015)

Open Mathematics

Which subgroups of the symmetric group Sn arise as invariance groups of n-variable functions defined on a k-element domain? It appears that the higher the difference n-k, the more difficult it is to answer this question. For k ≤ n, the answer is easy: all subgroups of Sn are invariance groups. We give a complete answer in the cases k = n-1 and k = n-2, and we also give a partial answer in the general case: we describe invariance groups when n is much larger than n-k. The proof utilizes Galois connections...

Currently displaying 1 – 20 of 27

Page 1 Next